
SHIMPO

For servo motor **ABLE** REDUCER

VRS Series

VRS series

High precision

Standard backlash is 3 arc-min, ideal for precision control.

High rigidity & torque

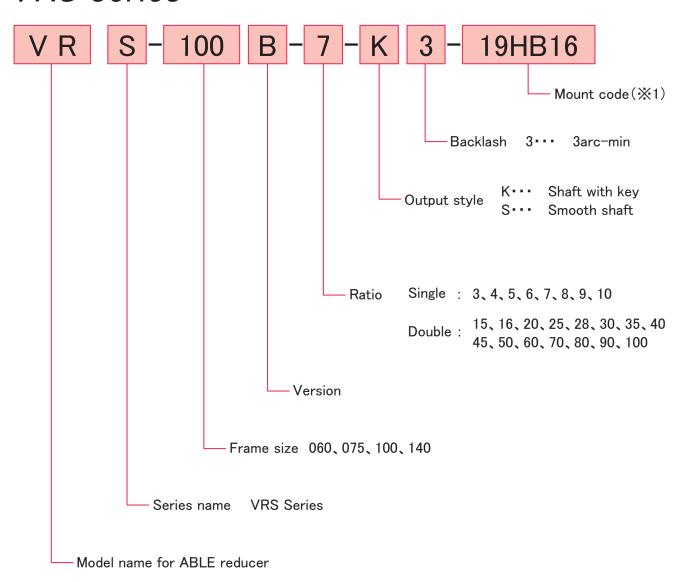
High rigidity & high torque were achived by uncaged needle roller bearings.

High load capacity

Adopting taper roller bearing for the main output shaft to increase radial and axial load.

Adapter-bushing connection

Can be attached to any motor all over the world.


No grease leakage

Perfect solution using high viscosity anti-separation grease.

Maintenance-free

No need to replace the grease for the life of the unit. Can be attached in any position.

VRS series

※1 Mount code

Mount code varies depending on the motor.

Please refer to reducer selection tool or contact us for more information.

Selection tool (English)

(http://www.nidec-shimpo.co.jp/selection/eng/)

Performance table

VRS-06	60B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	18	35	80	3000	6000	1700	2300
		4	27	50	100	3000	6000	1900	2500
		5	27	50	100	3000	6000	2000	2700
	Single	6	27	50	100	3000	6000	2100	2700
	Olligie	7	27	50	100	3000	6000	2200	2700
		6000	2300	2700					
		9	18	35	80	3000	6000	2400	2700
		10	18	35	80	3000	6000	2400	2700
		15	18	35	80	3000	6000	2800	2700
		16	27	50	100	3000	6000	2800	2700
		20	27	50	100	3000	6000	3000	2700
060B		25	27	50	100	3000	6000	3000	2700
		28	27	50	100	3000	6000	3000	2700
		30	18	35	80	3000	6000	3000	2700
		35	27	50	100	3000	6000	3000	2700
	Double	40	27	50	100	3000	6000	3000	2700
		45	18	35	80	3000	6000	3000	2700
		50	27	50	100	3000	6000	3000	2700
		60	27	50	100	3000	6000	3000	2700
	70		27	50	100	3000	6000	3000	2700
	80		27	50	100	3000	6000	3000	2700
		90	18	35	80	3000 6000		3000	2700
		100	18	35	80	3000	6000	3000	2700
			※ 8	※ 9	※ 10				

			200	7.0	7.10									
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leqq \phi \ 14)$	Moment of inertia $(\leqq \phi \ 19)$						
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]						
		3	3000	2700		0.15	0.23	0.44						
		4	3000	2700		0.10	0.18	0.39						
		5	3000	00 2700		0.080	0.16	0.37						
	Single	6	3000		1.6	0.070	0.15	0.36						
	Single	7	3000		1.0	0.064	0.14	0.35						
		8	3000	0 2700		0.060	0.14	0.35						
		9			0.058	0.14	0.35							
		10 3000 2700		0.056	0.14	0.34								
		15 3000 2700		0.055	0.14	_								
	15	3000	2700		0.057	0.14	_							
		16 3000 2700 20 3000 2700	2700		0.054	0.13	_							
060B		25	3000	2700		0.053	0.13	_						
		28	3000	2700		0.055	0.14	_						
		30	3000	2700		0.049	0.13	_						
		35	3000	2700		0.053	0.13	_						
	Double	40	3000	2700	1.8	0.049	0.13	_						
		45	3000	2700		0.053	0.13	_						
		50	3000	2700								0.049	0.13	_
		60	3000	2700		0.049	0.13	_						
		70	3000	2700		0.049	0.13	_						
		80	3000	2700		0.049	0.13	_						
		90	3000	2700		0.049	0.13	_						
		100	3000	2700		0.049	0.13	_						

- $\ensuremath{\mathbb{X}}$ 1 With nominal input speed, service life is 20,000 hours.
- $\ensuremath{\,\times\,}$ 2 The maximum torque when starting and stopping.
- $\mbox{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- $\mbox{\%}$ 5 The maximum momentary input speed.
- \divideontimes 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- % 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\,\times\,}$ 8 The maximum radial load the reducer can accept.
- X 10 The weight may vary slightly model to model.

Performance table

VRS-078	5B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	50	80	200	3000	6000	2300	3400
		4	75	125	250	3000 6000		2500	3700
		5	75	125	250	3000	6000	2700	3900
	Cinala	6	75	125	250	3000	6000	2800	3900
	Single	7	75	125	250	3000	6000	3000	3900
		8	75	125	250	3000	6000	3100	3900
	8 9		50	80	200	3000	6000	3200	3900
		10	50	80	200	3000	6000	3300	3900
		15	50	80	200	3000	6000	3700	3900
		16	75	125	250	3000	6000	3800	3900
		20	75	125	250	3000	6000	4000	3900
075B		25	75	125	250	3000	6000	4300	3900
		28	75	125	250	3000	6000	4300	3900
		30	50	80	200	3000	6000	4300	3900
		35	75	125	250	3000	6000	4300	3900
	Double	40	75	125	250	3000	6000	4300	3900
		45	50	80	200	3000	6000	4300	3900
		50	75	125	250	3000	6000	4300	3900
		60	75	125	250	3000	6000	4300	3900
	70		75	125	250	3000	6000	4300	3900
80		75	125	250	3000	6000	4300	3900	
90		50	80	200	3000	6000	4300	3900	
		100	50	80	200	3000	6000	4300	3900
			% 8	※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	4300	3900 3900		-	0.67 1.1		3.1
		4	4300	3900		_	0.47	0.93	2.9
		5	4300			_	0.38	0.85	2.9
	Cinada	6	4300	3900	3.4	_	0.34	0.81	2.8
	Single	7	4300	3900	3.4	_	0.31	0.78	2.8
		8	4300	3900		_	0.30	0.76	2.8
		9 4300 3900		_	0.29	0.75	2.8		
		10 4300 3900		_	0.29	0.75	2.8		
		15	4300	3900		0.13	0.28	0.72	_
		16	4300	3900		0.14	0.30	0.73	_
		20	4300	3900		0.13	0.28	0.72	_
075B		25	4300	3900		0.12	0.28	0.71	_
		28	4300	3900		0.14	0.29	0.73	_
		30	4300	3900		0.099	0.25	0.70	_
		35	4300	3900		0.12	0.27	0.71	_
	Double	40	4300	3900	3.8	0.098	0.25	0.69	_
		45	4300	3900		0.12	0.27	0.71	_
		50	4300	3900		0.098	0.25	0.69	_
		60	4300	3900		0.098	0.25	0.69	_
		70	4300	3900		0.097	0.25	0.69	_
		80	4300	3900		0.097	0.25	0.69	_
		90	4300	3900		0.097	0.25	0.69	_
		100	4300	3900		0.097	0.25	0.69	_

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- $\mbox{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- imes 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- \divideontimes 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\mathbb{X}}$ 8 The maximum radial load the reducer can accept.
- $\frak{\%}$ 9 The maximum axial load the reducer can accept.
- $\ensuremath{\cancel{\times}}\xspace$ 10 The weight may vary slightly model to model.

Performance table

120

100

225

VRS-10	00B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	120	225	500	3000	6000	3400	4800
		4	120	330	625	3000	6000	3700	5200
		5	180	330	625	3000	6000	4000	5600
	Single	6	180	330	625	3000	6000	4200	5900
	Sirigic	7	180	330	625	3000	6000	4400	6100
		8	180	330	625	3000	6000	4600	6300
		9	120	225	500	3000	6000	4800	6300
		10	120	225	500	3000	6000	4900	6300
		15	120	225	500	3000	6000	5600	6300
		16	180	330	625	3000	6000	5700	6300
		20	180	330	625	3000	6000	6100	6300
100B		25	180	330	625	3000	6000	6500	6300
		28	180	330	625	3000	6000	6700	6300
		30	120	225	500	3000	6000	6900	6300
		35	180	330	625	3000	6000	7000	6300
	Double	40	180	330	625	3000	6000	7000	6300
		45	120	225	500	3000	6000	7000	6300
		50	180	330	625	3000	6000	7000	6300
		60	180	330	625	3000	6000	7000	6300
		70	180	330	625	3000	6000	7000	6300
		80	180	330	625	3000	6000	7000	6300
		90	120	225	500	3000	6000	7000	6300

500

3000

6000

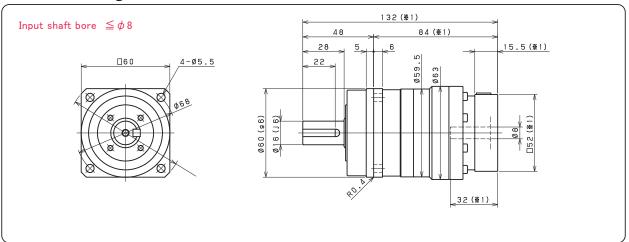
7000

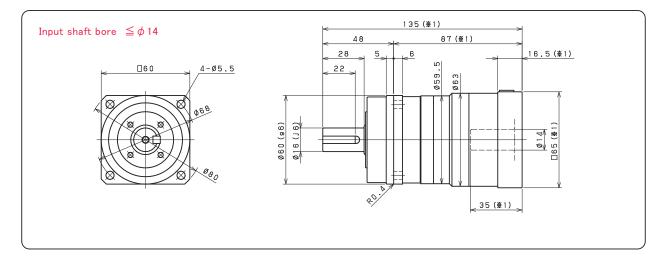
6300

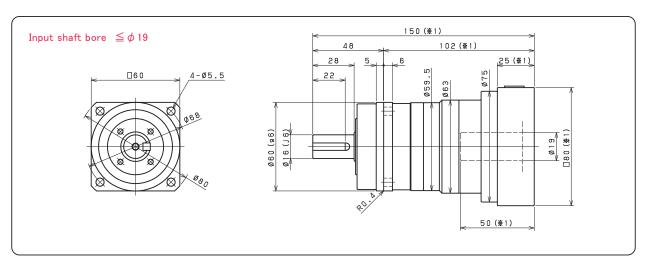
			<u>**8</u>	×9	% 10	0000	0000	7000	0000
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi 38)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm²]	[kgcm ²]
		3	7000	6300		_	3.2	5.2	13
		4	7000	6300		-	2.0	4.0	12
		5	7000	6300	6300		1.5	3.6	11
	Single	6	7000	6300			1.3	3.3	11
	Single	7	7000	6300		-	1.1	3.1	11
		8	7000	6300		-	1.0	3.0	11
		9	7000	6300		_	0.96	3.0	11
		10	7000	6300		-	0.93	3.0	11
		15	7000	6300		0.42	0.86	2.8	_
		16	7000	6300		0.48	0.91	2.9	-
		20	7000	6300		0.40	0.83	2.8	_
100B		25	7000	6300		0.38	0.82	2.8	-
		28	7000	6300		0.44	0.87	2.8	_
		30	7000	6300		0.29	0.74	2.7	1
		35	7000	6300		0.37	0.81	2.7	-
	Double	40	7000	6300	8.8	0.28	0.73	2.7	_
		45	7000	6300		0.37 0.80	0.80	2.7	-
		50	7000	6300		0.28	0.73	2.7	_
		60	7000	6300		0.28	0.73	2.7	-
		70	7000	6300	1	0.28	0.73	2.7	_
		80	7000	6300		0.28	0.73	2.7	-
		90	7000	6300	1	0.27	0.73	2.7	_
		100	7000	6300		0.27	0.73	2.7	_

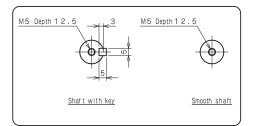
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- imes 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- \divideontimes 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\mbox{\%}$ 8 The maximum radial load the reducer can accept.
- 💥 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

Performance table

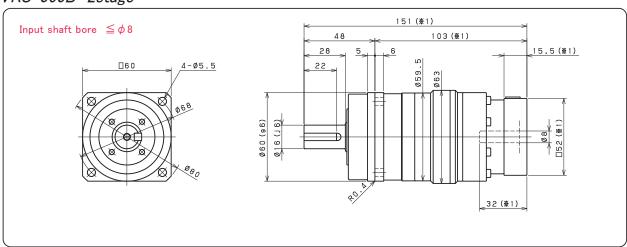


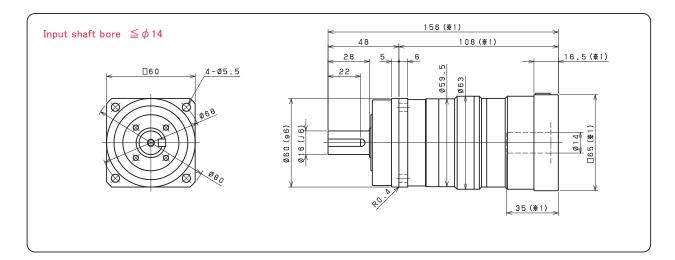

/RS-14	!0B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	240	470	1000			6700	9000
		4	240	700	1250	2000	4000	7400	9000
		5	360	700	1250	2000	4000	7900	9000
	C:l-	6	360	700	1250	2000	4000	8300	9000
	Single	7	360	700	1250	2000	4000	8700	9000
		8	360	700	1250	2000	4000	9100	9000
		9	240	470	1000	2000	4000	9400	9000
		10	240	470	1000	2000	4000	9700	9000
		15	240	470	1000	2000	4000	10000	9000
		16	360	700	1250	2000	4000	10000	9000
		20	360	700	1250	2000	4000	10000	9000
140B		25	360	700	1250	2000	4000	10000	9000
		28	360	700	1250	2000	4000	10000	9000
		30	240	470	1000	2000	4000	10000	9000
		35	360	700	1250	2000	4000	10000	9000
	Double	40	360	700	1250	2000	4000	10000	9000
		45	240	470	1000	2000	4000	10000	9000
		50	360	700	1250	2000	4000	10000	9000
		60	360	700	1250	2000	4000	10000	9000
70		70	360	700	1250	2000	4000	10000	9000
		80	360	700	1250	2000	4000	10000	9000
		90	240	470	1000	2000	4000	10000	9000
		100	240	470	1000	2000	4000	10000	9000
			% 8	※ 9	※ 10				

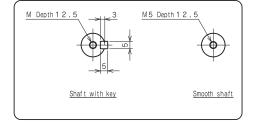

Frame size	Stage	Ratio	Maximum radial load	Maximum Weight		Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi 38)$	Moment of inertia $(\leq \phi 48)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	10000	9000		-	12	20	42
		4	10000	9000	9000		7.4	15	37
		5	10000	9000	9000		5.8	13	36
	C' l .	6	10000	9000 17		-	4.9	13	35
	Single	7	10000	9000		_	4.1	12	34
		8	10000	9000		-	3.8	12	34
		9	10000	9000		_	3.6	11	34
		10	10000	9000		_	3.4	11	33
		15	10000 9000			1.3	3.2	11	_
		16	10000	9000		1.5	3.5	11	_
		20	10000	9000		1.2	3.1	11	_
140B		25	10000	9000		1.1	3.1	11	_
		28	10000	9000		1.4	3.3	11	_
		30	10000	9000		0.85	2.8	10	_
		35	10000	9000		1.1	3.1	11	_
	Double	40	10000	9000	19	0.83	2.8	10	_
		45	10000	9000		1.1	3.0	11	_
		50	10000	9000		0.81	2.8	10	_
		60	10000	9000		0.81	2.8	10	_
		70	10000	9000		0.80	2.8	10	_
		80	10000	9000		0.80	2.8	10	_
		90	10000	9000		0.80	2.8	10	_
		100	10000	9000		0.80	2.8	10	_


- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- $\mbox{\%}$ 2 The maximum torque when starting and stopping.
- $\mbox{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- $\mbox{\%}$ 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- \divideontimes 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\mathbb{X}}$ 8 The maximum radial load the reducer can accept.
- $\frak{\%}$ 9 The maximum axial load the reducer can accept.
- $\ensuremath{\cancel{\times}}\xspace$ 10 The weight may vary slightly model to model.

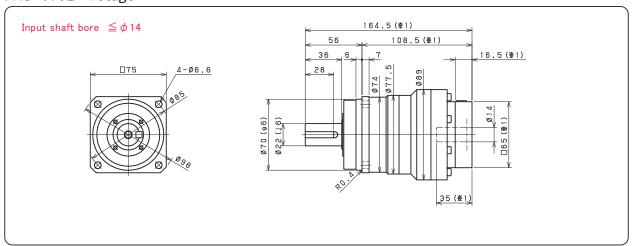
VRS-060B 1stage

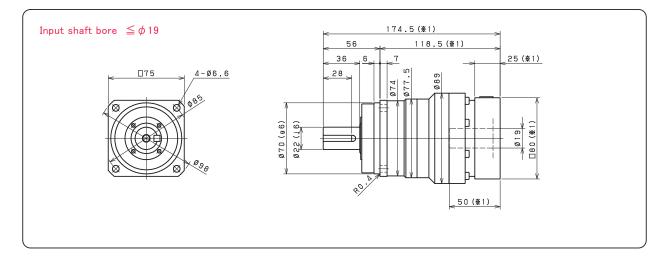


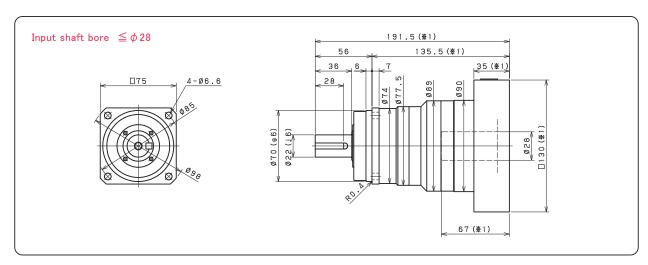

- \divideontimes 1 Length will vary depending on motor.

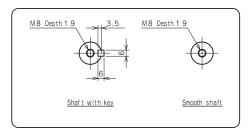

Dimensions

VRS-060B 2stage

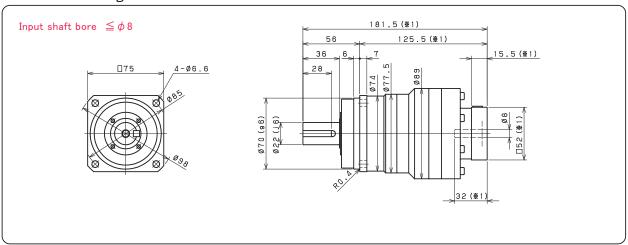


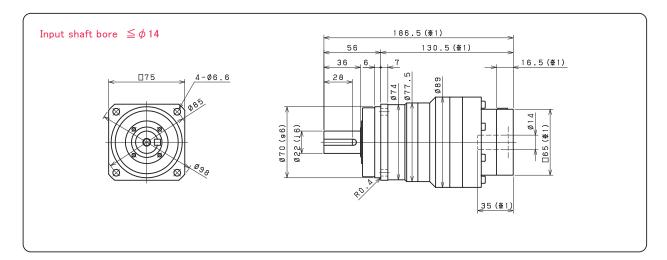


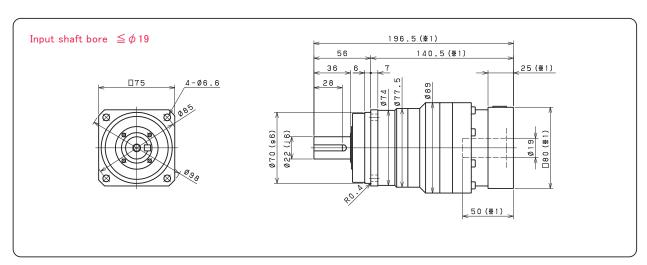


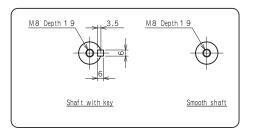

- \divideontimes 1 Length will vary depending on motor.
- \divideontimes 2 Bushing will be inserted to adapt to motor shaft.

VRS-075B 1stage

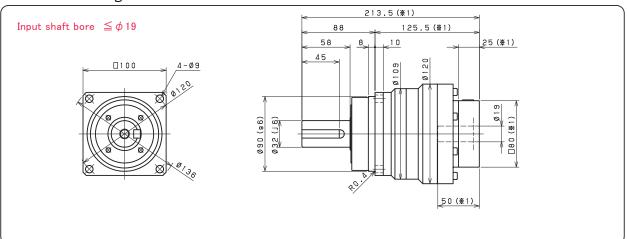


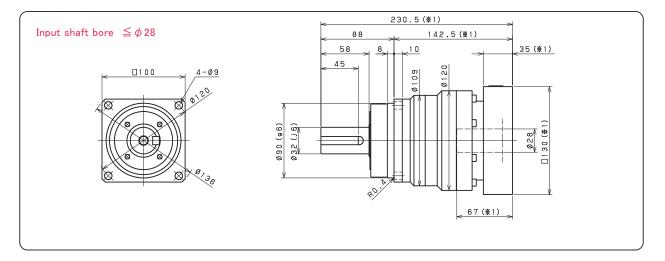

- \divideontimes 1 Length will vary depending on motor.

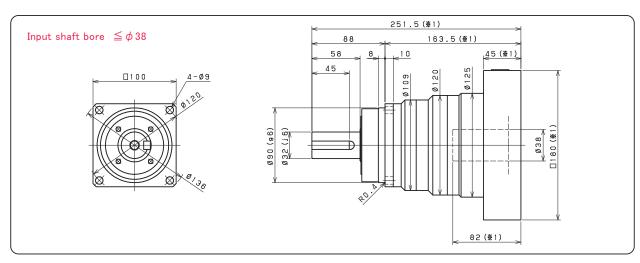

Dimensions

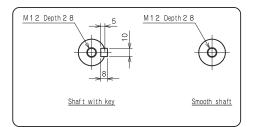


VRS-075B 2stage

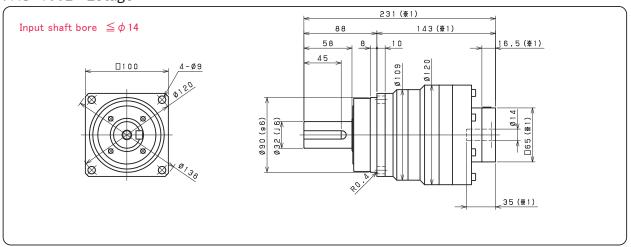


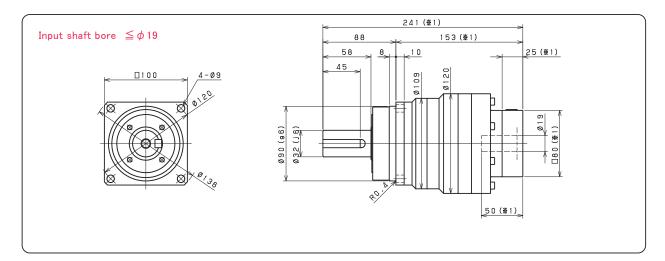


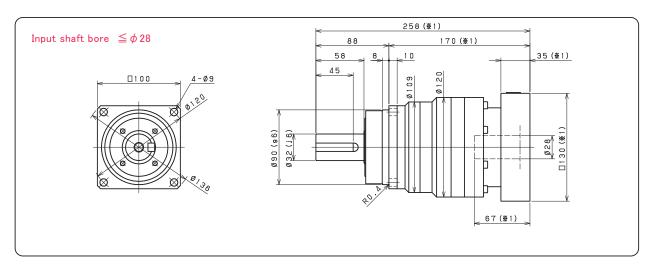


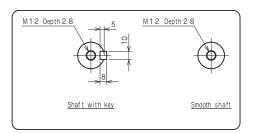

- \divideontimes 1 Length will vary depending on motor.

VRS-100B 1stage

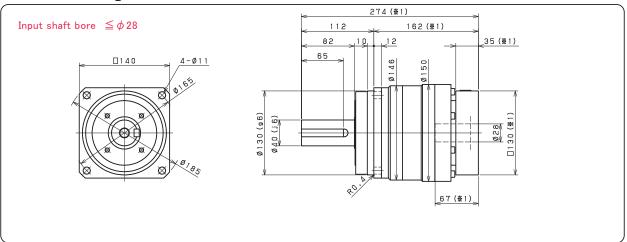


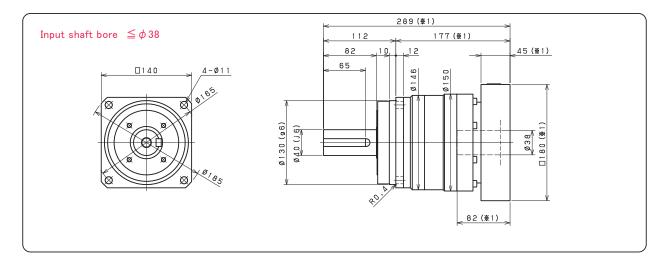


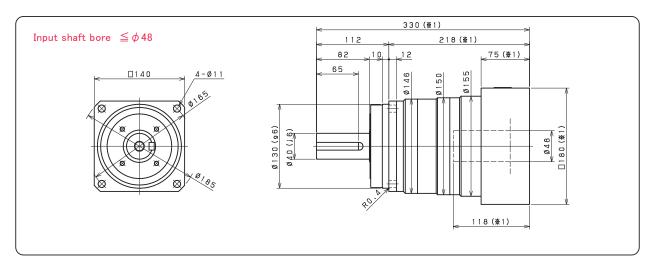

- \divideontimes 1 Length will vary depending on motor.

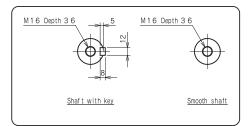

Coaxial shaft

VRS-100B 2stage

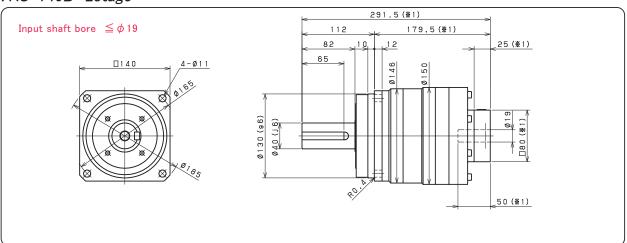


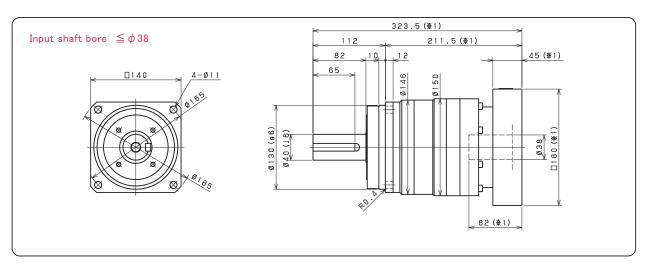


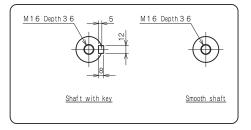



- \divideontimes 1 Length will vary depending on motor.

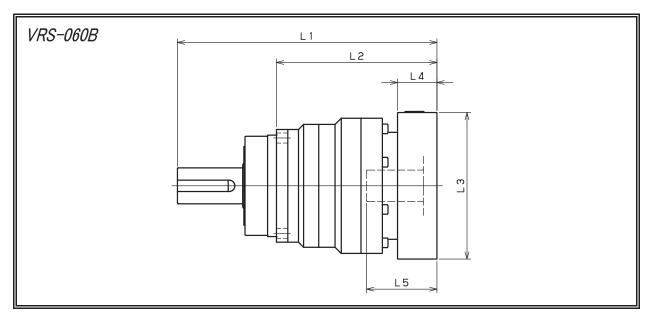
VRS-140B 1stage





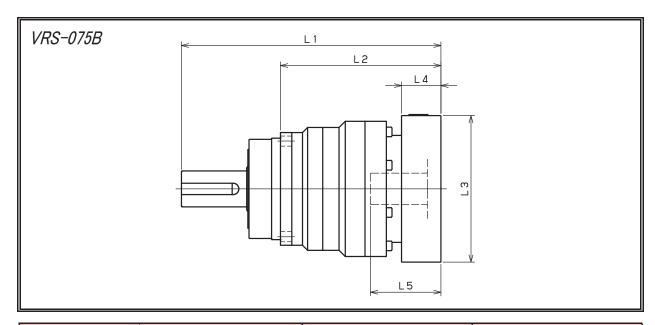

- \divideontimes 1 Length will vary depending on motor.

VRS-140B 2stage



- \divideontimes 1 Length will vary depending on motor.

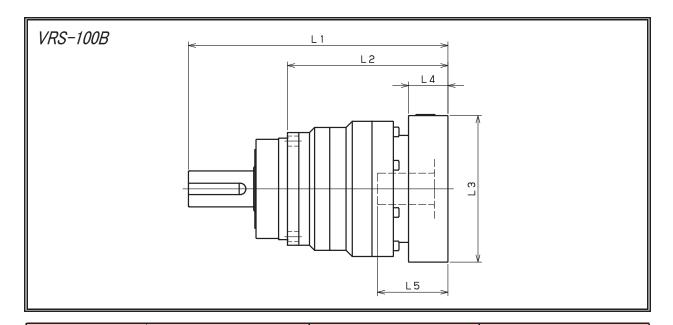
Dimensions (Adapter)


Model number	**: Adapter code			Single					Double		
wodel number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA•AC•AD•AF•AG	132	84	□52	15.5	32	151	103	□52	15.5	32
VRS-060B-□-□-8**	AB•AE•AH•AJ•AK	137	89	□52	20.5	37	156	108	□52	20.5	37
()	BA•BB•BD•BE	132	84	□60	15.5	32	151	103	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF	137	89	□60	20.5	37	156	108	□60	20.5	37
	CA	137	89	□70	20.5	37	156	108	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	135	87	□65	16.5	35	156	108	□65	16.5	35
	BC•BH	140	92	□65	21.5	40	161	113	□65	21.5	40
	BL	145	97	□65	26.5	45	166	118	□65	26.5	45
	CA	135	87	□70	16.5	35	156	108	□70	16.5	35
VRS-060B-□-□-14**	СВ	140	92	□70	21.5	40	161	113	□70	21.5	40
(DA·DB·DC·DD·DF·DH	135	87	□80	16.5	35	156	108	□80	16.5	35
Input shaft bore≦ <i>φ</i> 14	DE	140	92	□80	21.5	40	161	113	□80	21.5	40
	DG	145	97	□80	26.5	45	166	118	□80	26.5	45
	EA-EB-EC	135	87	□90	16.5	35	156	108	□90	16.5	35
	ED	145	97	□90	26.5	45	166	118	□90	26.5	45
	FA	135	87	□100	16.5	35	156	108	□100	16.5	35
	GA	135	87	□115	16.5	35	156	108	□115	16.5	35
	DA-DB-DC	150	102	□80	25	50					
	DD	160	112	□80	35	60					
	DE	155	107	□80	30	55					
	EA	155	107	□90	30	55					
VD0 000D U U 1000	EB	150	102	□90	25	50					
VRS-060B-□-□-19**	EC	160	112	□90	35	60					
Input shaft bore $\leq \phi$ 19	FA	150	102	□100	25	50					
[pas sinare 20.0 = \$ 10]	FB	160	112	□100	35	60					
	GA•GC	155	107	□115	30	55					
	GB•GD	150	102	□115	25	50					
	HA	150	102	□130	25	50					
	НВ	165	117	□130	40	65					
	HC•HD•HE	155	107	□130	30	55					

 $[\]mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}\mbox{\ensuremath{Single}}\mbox{\ensuremath{reduction}}\mbox{\ensuremath{:}}\mbox{\ensuremath{1/15}}\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}\mbox{\ensuremath{,}}\mbox{\ensuremath{Double}}\mbox{\ensuremath{reduction}}\mbox{\ensuremath{:}}\mbox{\ensuremath{1/15}}\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}\mbox{\ensuremath{}}\mbox{\ensuremath{0}}\mbox{\ensuremath{:}}\mbox{\ensuremath{1/100}}\mbox{\ensuremath{0}}\mbox{\$

 $[\]divideontimes$ 2 Bushing will be inserted to adapt to motor shaft.

Dimensions (Adapter)

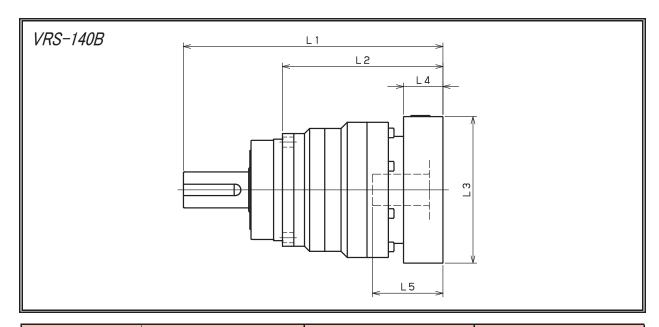


AA·AC·AD·AF·AG AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AE·AH·AJ·AK AB·AB·BB·BD·BE AB·AB·BD·BE AB·AB·BD·BE AB·AB·BD·BE AB·AB·BB·BD·BE AB·AB·BF·BD·BE AB·AB·BB·BB·BE AB·AB·BB·BB·BE AB·AB·BB·BB·BE AB·AB·BB·BB·BE AB·AB·BB·BB·BE AB·AB·BB·BB·BE AB·AB·BB·BB·BB·BB·BB·BB·BB·BB·BB·BB·BB·B	Model number	**:Adapter code			Single					Double		
Nest	Wodel Humber	<u> </u>	L1	L2	L3	L4	L5					
Input shaft bore ≤ \$\phi 8 BA·BB·BD·BE BC·BF 1815 125.5 160 15.5 32												
BC·BF CA CA CA CA CA CA CA C	VRS-075B-□-□-8**											
BA-BB-BD-BE-BF-BG-BJ-BK 164.5 108.5 165 130.5 170 20.5 37	(, , , , , , , , , ,)											
BA-BB-BB-BB-BF-BG-BJ-BK 164.5 108.5 165.5 16.5 35 186.5 130.5 165 16.5 35	Input shaft bore $\geq \varphi \otimes$											
BC·BH 169.5 113.5 □65 21.5 40 191.5 135.5 □65 21.5 40 BL 174.5 118.5 □65 26.5 45 196.5 140.5 □65 26.5 45 CA 164.5 108.5 □70 16.5 35 186.5 30.5 □70 16.5 35 CB 169.5 113.5 □70 21.5 40 191.5 135.5 □70 21.5 40 Input shaft bore ≤ φ14 DA·DB·DC·DD·DF·DH 164.5 108.5 □80 16.5 35 186.5 130.5 □70 21.5 40 DB 169.5 113.5 □80 16.5 35 186.5 130.5 □70 21.5 40 DG 174.5 118.5 □80 26.5 45 196.5 140.5 □80 26.5 45 EA·EB·EC 164.5 108.5 □90 16.5 35 186.5 130.5 □90 16.5 35 ED 174.5 118.5 □90 26.5 45 196.5 140.5 □90 16.5 35 GA 164.5 108.5 □100 16.5 35 186.5 130.5 □100 16.5 35 GA 164.5 108.5 □100 16.5 35 186.5 130.5 □100 16.5 35 GA 164.5 108.5 □100 16.5 35 186.5 130.5 □100 16.5 35 DD 184.5 128.5 □80 25.5 50 196.5 140.5 □80 25.5 50 DE 179.5 123.5 □80 30 55 201.5 145.5 □80 30 55 EA 179.5 123.5 □80 30 55 201.5 145.5 □80 30 55 EA 179.5 123.5 □90 30 55 201.5 145.5 □90 30 55 EA 179.5 123.5 □90 30 55 201.5 145.5 □90 30 55 GA-GC 179.5 123.5 □100 25 50 196.5 140.5 □100 25 50 HB 184.5 128.5 □100 35 60 206.5 150.5 □100 35 60 GA-GC 179.5 123.5 □115 30 55 201.5 145.5 □115 30 55 FA-FB-FC 191.5 135.5 □100 35 67 VRS-075B□□□□28** HB 201.5 145.5 □130 35 67 Input shaft bore ≤ φ28 KA-KB 191.5 135.5 □130 35 67 Input shaft bore ≤ φ28 KA-KB 191.5 135.5 □130 35 67 Input shaft bore ≤ φ28 KA-KB 191.5 135.5 □130 35 67 Input shaft bore ≤ φ28 KA-KB 191.5 135.5 □130 35 67 Input shaft bore ≤ φ28 KA-KB 191.5 135.5 □130 35 67								186.5	130.5			
BL												
CA												
VRS-075B-□-14**												
DA+DB+DC+DD+DF+DH 164.5 108.5 □80 16.5 35 186.5 130.5 □80 16.5 35			164.5					186.5		□70	16.5	
Input shaft bore ≤ φ 14 DE	VRS-075B-□-□-14**											
DG												
EA-EB-EC	Input shaft bore $\leq \phi$ 14											
ED												
FA		EA-EB-EC										
GA 164.5 108.5 □115 16.5 35 186.5 130.5 □115 16.5 35 186.5 □10.5			174.5			26.5	45				26.5	
DA·DB·DC												
DD 184.5 128.5 □80 35 60 206.5 150.5 □80 35 60 DE 179.5 123.5 □80 30 55 201.5 145.5 □80 30 55 EA 179.5 123.5 □90 30 55 201.5 145.5 □90 30 55 EB 174.5 118.5 □90 25 50 196.5 140.5 □90 25 50 Input shaft bore ≤ φ 19 FA 174.5 118.5 □100 25 50 196.5 140.5 □90 35 60 GA·GC 179.5 123.5 □100 35 60 206.5 150.5 □100 25 50 GB·GD 174.5 118.5 □100 35 60 206.5 150.5 □100 35 60 GA·GC 179.5 123.5 □115 30 55 201.5 145.5 □115 30 55 GB·GD 174.5 118.5 □115 25 50 196.5 140.5 □115 25 50 HA 174.5 118.5 □130 25 50 196.5 140.5 □115 25 50 HB 189.5 133.5 □130 40 65 211.5 155.5 □130 40 65 HC·HD·HE 179.5 123.5 □130 30 55 201.5 145.5 □130 30 55 FA·FB·FC 191.5 135.5 □130 35 67 GA·GB·GC·GD·GE·GF·GG 191.5 135.5 □130 35 67 Input shaft bore ≤ φ 28 KA·KB 191.5 135.5 □130 35 67 LA 191.5 135.5 □130 35 67			-									
DE 179.5 123.5 □80 30 55 201.5 145.5 □80 30 55 EA 179.5 123.5 □90 30 55 201.5 145.5 □90 30 55 EB 174.5 118.5 □90 25 50 196.5 140.5 □90 25 50 Input shaft bore ≤ φ 19 FA 174.5 118.5 □100 25 50 196.5 140.5 □100 25 50 FB 184.5 128.5 □100 35 60 206.5 150.5 □100 35 60 GA·GC 179.5 123.5 □115 30 55 201.5 145.5 □110 35 60 GA·GC 179.5 123.5 □115 30 55 201.5 145.5 □115 30 55 GB·GD 174.5 118.5 □115 25 50 196.5 140.5 □115 25 50 HA 174.5 118.5 □115 25 50 196.5 140.5 □115 25 50 HA 174.5 118.5 □115 25 50 196.5 140.5 □115 25 50 HA 174.5 118.5 □130 25 50 196.5 140.5 □130 25 50 HB 189.5 133.5 □130 40 65 211.5 155.5 □130 40 65 HC·HD·HE 179.5 123.5 □130 30 55 201.5 145.5 □130 30 55 FA·FB·FC 191.5 135.5 □130 30 55 201.5 145.5 □130 30 55 FA·FB·FC 191.5 135.5 □100 35 67 HA·HC·HD 191.5 135.5 □130 35 67 Input shaft bore ≤ φ 28 KA·KB 191.5 135.5 □180 35 67 LA 191.5 135.5 □200 35 67		DA-DB-DC										
EA 179.5 123.5 □90 30 55 201.5 145.5 □90 30 55 EB 174.5 118.5 □90 25 50 196.5 140.5 □90 25 50 EC 184.5 128.5 □90 35 60 206.5 150.5 □90 35 60 FA 174.5 118.5 □100 25 50 196.5 140.5 □100 25 50 FB 184.5 128.5 □100 35 60 206.5 150.5 □100 35 60 GA·GC 179.5 123.5 □100 35 60 206.5 150.5 □100 35 60 GA·GC 179.5 123.5 □115 30 55 201.5 145.5 □115 30 55 GB·GD 174.5 118.5 □115 25 50 196.5 140.5 □115 25 50 HA 174.5 118.5 □130 25 50 196.5 140.5 □115 25 50 HB 189.5 133.5 □130 40 65 211.5 155.5 □130 30 55 FA·FB·FC 191.5 135.5 □100 35 67 VRS-075B-□-□-28** HB 201.5 145.5 □130 35 67 LA 191.5 135.5 □180 35 67 LA 191.5 135.5 □200 35 67 LA												
EB		DE										
VRS-075B-□-□-19** EC		EA										
Input shaft bore ≤ φ 19	VDC 075D □ □ 10##											
FB	VK2-0/3B-□-□-19**											
GA·GC 179.5 123.5 □115 30 55 201.5 145.5 □115 30 55 GB·GD 174.5 118.5 □115 25 50 HA 174.5 118.5 □130 25 50 196.5 140.5 □130 25 50 HB 189.5 133.5 □130 40 65 211.5 155.5 □130 40 65 HC·HD·HE 179.5 123.5 □130 30 55 201.5 145.5 □130 30 55 FA·FB·FC 191.5 135.5 □100 35 67 GA·GB·GC·GD·GE·GF·GG 191.5 135.5 □100 35 67 HA·HC·HD 191.5 135.5 □130 35 67 JA·JB·JC 191.5 135.5 □130 45 77 JA·JB·JC 191.5 135.5 □130 35 67 JA·JC 191.5 135.5 □130 35 67 JA·JC 191	Input shaft bore $\leq \phi$ 19											
GB·GD	[[]											
HA 174.5 118.5 □130 25 50 196.5 140.5 □130 25 50 HB 189.5 133.5 □130 40 65 211.5 155.5 □130 40 65 HC·HD·HE 179.5 123.5 □130 30 55 201.5 145.5 □130 30 55 FA·FB·FC 191.5 135.5 □100 35 67 GA·GB·GC·GD·GE·GF·GG 191.5 135.5 □100 35 67 HA·HC·HD 191.5 135.5 □130 35 67 JA·JB·JC 191.5 135.5 □130 45 77 JA·JB·JC 191.5 135.5 □150 35 67 LA 191.5 135.5 □180 35 67 LA 191.5 135.5 □180 35 67 JA·JB·JC 191.5 191.												
HB 189.5 133.5 □130 40 65 211.5 155.5 □130 40 65 HC+HD+HE 179.5 123.5 □130 30 55 201.5 145.5 □130 30 55 FA+FB+FC 191.5 135.5 □100 35 67 GA+GB+GC+GD+GE+GF+GG 191.5 135.5 □115 35 67 HA+HC+HD 191.5 135.5 □130 35 67 Input shaft bore ≤ φ 28 KA+KB 191.5 135.5 □180 35 67 LA 191.5 135.5 □200 35 67												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					□130			201.5	145.5	□130	30	55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
HB 201.5 145.5 □130 45 77	VRS-075R-□-□-29**											
KA·KB	VINO 0700 LI LI 20**											
LA 191.5 135.5 200 35 67	Input shaft bore ≤ d 28											
	(, , , , , , , , , , , , , , , , , , ,											
MA 191.5 135.5 \square 220 35 67												
1.0.101,100101 1.0.101		MA	191.5	135.5	□220	35	67				_	

 $[\]mbox{\ensuremath{\mbox{\%}}}\mbox{\ensuremath{1}}$ Single reduction : 1/3 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$, Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}$

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Dimensions (Adapter)


Model number	**: Adapter code			Single					Double		
Wodel Humber	Adapter Code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	BA·BB·BD·BE·BF·BG·BJ·BK						231	143	□65	16.5	35
	BC•BH						236	148	□65	21.5	40
	BL						241	153	□65	26.5	45
	CA						231	143	□70	16.5	35
VRS-100B-□-□-14**	СВ						236	148	□70	21.5	40
	DA.DB.DC.DD.DF.DH						231	143	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE						236	148	□80	21.5	40
	DG						241	153	□80	26.5	45
	EA•EB•EC						231	143	□90	16.5	35
	ED						241	153	□90	26.5	45
	FA						231	143	□100	16.5	35
	GA						231	143	□115	16.5	35
	DA-DB-DC	213.5	125.5	□80	25	50	241	153	□80	25	50
	DD	223.5	135.5	□80	35	60	251	163	□80	35	60
	DE	218.5	130.5	□80	30	55	246	158	□80	30	55
	EA	218.5	130.5	□90	30	55	246	158	□90	30	55
	EB	213.5	125.5	□90	25	50	241	153	□90	25	50
VRS-100B-□-□-19**	EC	223.5	135.5	□90	35	60	251	163	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	213.5	125.5	□100	25	50	241	153	□100	25	50
I I I I I I I I I I I I I I I I I I I	FB	223.5	135.5	□100	35	60	251	163	□100	35	60
	GA•GC	218.5	130.5	□115	30	55	246	158	□115	30	55
	GB•GD	213.5	125.5	□115	25	50	241	153	□115	25	50
	HA	213.5	125.5	□130	25	50	241	153	□130	25	50
	HB	228.5	140.5	□130	40	65	256	168	□130	40	65
	HC•HD•HE	218.5	130.5	□130	30	55	246	158	□130	30	55
	FA•FB•FC	230.5	142.5	□100	35	67	258	170	□100	35	67
	GA·GB·GC·GD·GE·GF·GG	230.5	142.5	□115	35	67	258	170	□115	35	67
VD0 400D D D 00	HA-HC-HD	230.5	142.5	□130	35	67	258	170	□130	35	67
VRS-100B-□-□-28**	HB	240.5	152.5	□130	45	77	268	180	□130	45	77
Input shaft bore $\leq \phi$ 28	JA•JB•JC	230.5	142.5	□150	35	67	258	170	□150	35	67
Imput shart bore = \$\psi_20\$	KA•KB	230.5	142.5	□180	35	67	258	170	□180	35	67
	LA	230.5	142.5	□200	35	67	258	170	□200	35	67
	MA	230.5	142.5	□220	35	67	258	170	□220	35	67
	HA	251.5	163.5	□130	45	82					
	НВ	246.5	158.5	□130	40	77					
\(\(\text{P}\) +000 \(\text{P}\) \(\text{P}\)	JA	251.5	163.5	□150	45	82					
VRS-100B-□-□-38**	KA•KB•KC	251.5	163.5	□180	45	82					
Input shaft bore $\leq \phi$ 38	LA	251.5	163.5	□200	45	82					
Triput Shart bore = \$\psi 38\$	LB	261.5	173.5	□200	55	92					
	MA·MB	251.5	163.5	□220	45	82					
	NA	251.5	163.5		45	82					
								1	1.0		100

 $[\]mbox{\ensuremath{\%}}\mbox{1}$ Single reduction : 1/3 $\mbox{\ensuremath{\sim}}\mbox{1/10},$ Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{1/100}$

 $[\]ensuremath{lepha}$ 2 Bushing will be inserted to adapt to motor shaft.

Dimensions (Adapter)

Model number	**: Adapter code			Single					Double		
Woder Humber	<u> </u>	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	DA-DB-DC						291.5	179.5	□80	25	50
	DD						301.5	189.5	□80	35	60
	DE						296.5	184.5	□80	30	55
	EA						296.5	184.5	□90	30	55
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EB						291.5	179.5	□90	25	50
VRS-140B-□-□-19**	EC						301.5	189.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA						291.5	179.5	□100	25	50
= + 1-)	FB						301.5	189.5	□100	35	60
	GA•GC						296.5	184.5	□115	30	55
	GB•GD						291.5	179.5	□115	25	50
	HA						291.5	179.5	□130	25	50
	НВ						306.5	194.5	□130	40	65
	HC·HD·HE						296.5	184.5	□130	30	55
	FA•FB•FC	274	162	□100	35	67	308.5	196.5	□100	35	67
	GA-GB-GC-GD-GE-GF-GG	274	162	□115	35	67	308.5	196.5	□115	35	67
VRS-140B-□-□-28**	HA-HC-HD	274	162	□130	35	67	308.5	196.5	□130	35	67
VRS-140B-∐-∐-28**	НВ	284	172	□130	45	77	318.5	206.5	□130	45	77
Input shaft bore $\leq \phi$ 28	JA•JB•JC	274	162	□150	35	67	308.5	196.5	□150	35	67
_,	KA•KB	274	162	□180	35	67	308.5	196.5	□180	35	67
	LA	274	162	□200	35	67	308.5	196.5	□200	35	67
	MA	274	162	□220	35	67	308.5	196.5	□220	35	67
	HA	289	177	□130	45	82	323.5	211.5	□130	45	82
	НВ	284	172	□130	40	77	318.5	206.5	□130	40	77
VRS-140B-□-□-38**	JA	289	177	□150	45	82	323.5	211.5	□150	45	82
VRS-140B-∐-∐-38**	KA•KB•KC	289	177	□180	45	82	323.5	211.5	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	289	177	□200	45	82	323.5	211.5	□200	45	82
= +) [LB	299	187	□200	55	92	333.5	221.5	□200	55	92
	MA•MB	289	177	□220	45	82	323.5	211.5	□220	45	82
	NA	289	177	□250	45	82	323.5	211.5	□250	45	82
	KB•KC	310	198	□180	55	98					
	KA	330	218	□180	75	118					
VRS-140B-□-□-48**	LA	310	198	□200	55	98					
	MA	310	198	□220	55	98					
Input shaft bore $\leq \phi$ 48	MB	330	218	□220	75	118					
	NA	330	218	□250	75	118					
	PA	330	218	□280	75	118					

 $\mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}\mbox{\ensuremath{Single}}\mbox{\ensuremath{reduction}}\mbox{\ensuremath{:}}\mbox{\ensuremath{1/15}}\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}\mbox{\ensuremath{Double}}\mbox{\ensuremath{reduction}}\mbox{\ensuremath{:}}\mbox{\ensuremath{1/15}}\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}\mbox{\ensuremath{B}}\mbox{\ensuremath{obs}}\mbox{\ensuremath{0}}\mbox{\ensuremath{\otimes}}\mbox{\ensuremath{1/100}}\mbox{\ensuremath{obs}}\mbox{\ensure$

 $\frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.