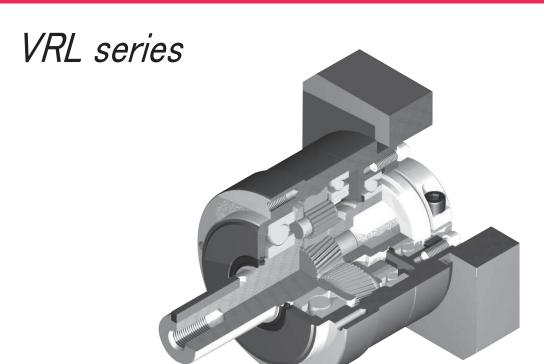

SHIMPO


For servo motor **ABLE** REDUCER

VRLSeries

Features

Quiet operation

Helical gears contribute to reduce vibration and noise.

High precision

Standard backlash is 5 arc-min, ideal for precision control.

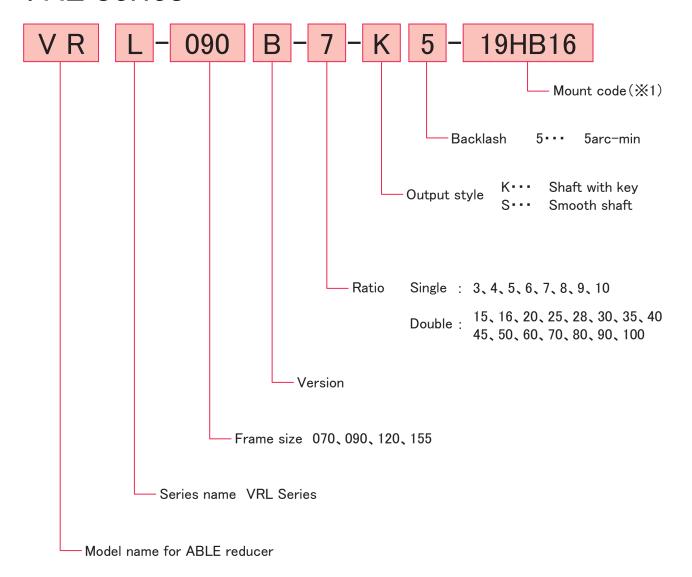
High rigidity & torque

High rigidity & high torque were achived by uncaged needle roller bearings.

Adapter-bushing connection

Can be attached to any motor all over the world.

No grease leakage


Perfect solution using high viscosity anti-separation grease.

Maintenance-free

No need to replace the grease for the life of the unit. Can be attached in any position.

Model number

VRL series

★1 Mount code

Mount code varies depending on the motor.

Please refer to reducer selection tool or contact us for more information.

Selection tool (English)

(http://www.nidec-shimpo.co.jp/selection/eng/)

Performance table

VRL-07	70B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	18	35	80	3000	6000	430	310
		4	27	50	100	3000	6000	470	360
		5	27	50	100	3000	6000	510	390
	Single 6		27	50	100	3000	6000	540	430
	Single 7		27	50	100	3000	6000	570	460
		8	27	50	100	3000	6000	600	480
		9	18	35	80	3000	6000	620	510
		10	18	35	80	3000	6000	640	530
		15	18	35	80	3000	6000	740	630
		16	27	50	100	3000	6000	750	650
		20	27	50	100	3000	6000	810	720
070B		25	27	50	100	3000	6000	870	790
		28	27	50	100	3000	6000	910	830
		30	18	35	80	3000	6000	930	860
		35	27	50	100	3000	6000	980	920
	Double	40	27	50	100	3000	6000	1000	970
		45	18	35	80	3000	6000	1100	1000
		50	27	50	100	3000	6000	1100	1100
		60	27	50	100	3000	6000	1200	1100
		70	27	50	100	3000	6000	1200	1100
		80	27	50	100	3000	6000	1200	1100
		90	18	35	80	3000	6000	1200	1100
	100		18	35	80	3000	6000	1200	1100
			※ 8	※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi \ 19)$			
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]			
		3	1200	1100		0.14	0.22	0.43			
		4	1200	1100		0.095	0.17	0.38			
		5	1200	1100		0.077	0.16	0.36			
	Single	6	1200	1100	1.5	0.068	0.15	0.36			
	Sirigie	7	1200	1100	1.5	0.062	0.14	0.35			
		8	1200	1100		0.059	0.14	0.35			
		9	1200	1100		0.057	0.14	0.34			
		10	1200	1100		0.056	0.14	0.34			
		15	1200	1100		0.055	0.14	_			
		16	1200	1100		0.057	0.14	_			
		20	1200	1100		0.054	0.13	_			
070B		25	1200	1100		0.053	0.13	_			
		28	1200	1100		0.055	0.14	_			
		30	1200	1100		0.049	0.13	_			
		35	1200	1100		0.053	0.13	_			
	Double	40	1200	1100	1.7	0.049	0.13	_			
		45	1200	1100					0.053	0.13	_
		50	1200	1100						0.049	0.13
		60	1200	1100		0.049	0.13	_			
		70	1200	1100		0.049	0.13	_			
		80	1200	1100		0.049	0.13	_			
		90	1200	1100		0.049	0.13	_			
		100	1200	1100		0.049	0.13	-			

- $\mbox{\%}$ 1 With nominal input speed, service life is 20,000 hours.
- $\mbox{\%}$ 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- $\ensuremath{\mathbb{X}}$ 4 The maximum average input speed.
- $\ensuremath{\ensuremath{\,\times}}$ 5 The maximum momentary input speed.
- $\mbox{\%}$ 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{X}\ 8$ The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.

Performance table

VRL-09	0B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	50	80	200	3000	6000	810	930
		4	75	125	250	3000	6000	890	1100
		5	75	125	250	3000	6000	960	1200
	Single 6		75	125	250	3000	6000	1000	1300
	/		75	125	250	3000	6000	1100	1300
	8		75	125	250	3000	6000	1100	1400
		9	50	80	200	3000	6000	1200	1500
		10	50	80	200	3000	6000	1200	1600
		15	50	80	200	3000	6000	1400	1900
		16	75	125	250	3000	6000	1400	1900
		20	75	125	250	3000	6000	1500	2100
090B		25	75	125	250	3000	6000	1600	2200
		28	75	125	250	3000	6000	1700	2200
		30	50	80	200	3000	6000	1700	2200
		35	75	125	250	3000	6000	1800	2200
	Double	40	75	125	250	3000	6000	1900	2200
		45	50	80	200	3000	6000	2000	2200
		50	75	125	250	3000	6000	2100	2200
		60	75	125	250	3000	6000	2200	2200
		70	75	125	250	3000	6000	2300	2200
		80	75	125	250	3000	6000	2400	2200
		90	50	80	200	3000	6000	2400	2200
		100	50	80	200	3000	6000	2400	2200
			※ 8	※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leqq \phi \ 14)$	Moment of inertia $(\leqq \phi 19)$	Moment of inertia $(\leq \phi 28)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	2400	2200		ı	0.72	1.2	3.2
		4	2400	2200		-	0.49	0.95	3.0
		5	2400	2200		-	0.40	0.86	2.9
	Cinala	6	2400	2200	3.5	ı	0.36	0.82	2.8
	Single	7	2400	2200	3.5	-	0.32	0.79	2.8
		8	2400	2200		-	0.31	0.77	2.8
		9	2400	2200		-	0.29	0.76	2.8
		10	2400	2200		-	0.29	0.75	2.8
		15	2400	2200		0.13	0.28	0.72	-
		16	2400	2200		0.15	0.30	0.74	-
		20	2400	2200		0.13	0.28	0.72	1
090B		25	2400	2200		0.12	0.28	0.71	1
		28	2400	2200		0.14	0.29	0.73	1
		30	2400	2200		0.10	0.25	0.70	1
		35	2400	2200		0.12	0.27	0.71	_
	Double	40	2400	2200	4	0.099	0.25	0.70	1
		45	2400	2200		0.12	0.27 0.71		1
		50	2400	2200		0.098	0.25	0.69	1
		60	2400	2200		0.098	0.25	0.69	1
		70	2400	2200		0.097	0.25	0.69	-
		80	2400	2200		0.097	0.25	0.69	_
		90	2400	2200		0.097	0.25	0.69	_
		100	2400	2200		0.097	0.25	0.69	-

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- $\mbox{\%}$ 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- $\ensuremath{\mathbb{X}}$ 4 The maximum average input speed.
- $\ensuremath{\ensuremath{\,\times}}$ 5 The maximum momentary input speed.
- $\mbox{\%}$ 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{X}\ 8$ The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.

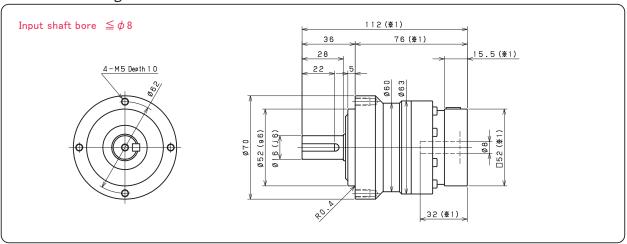
24

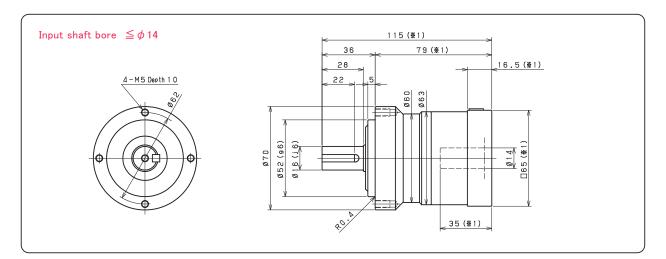
Performance table

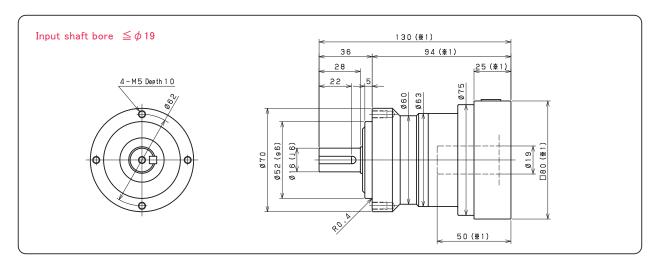
<u> (RL-12</u> 0	OB		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	120	225	500	3000	6000	1300	1500
		4	120	330	625	3000	6000	1500	1700
		5	180	330	625	3000	6000	1600	1900
	C:I-	6	180	330	625	3000	6000	1700	2000
	Single 7		180	330	625	3000	6000	1800	2100
	8		180	330	625	3000	6000	1900	2300
		9	120	225	500	3000	6000	1900	2400
		10	120	225	500	3000	6000	2000	2500
	-	15	120	225	500	3000	6000	2300	3000
		16	180	330	625	3000	6000	2300	3100
		20	180	330	625	3000	6000	2500	3400
120B		25	180	330	625	3000	6000	2700	3700
		28	180	330	625	3000	6000	2800	3900
		30	120	225	500	3000	6000	2900	3900
		35	180	330	625	3000	6000	3000	3900
	Double	40	180	330	625	3000	6000	3200	3900
		45	120	225	500	3000	6000	3300	3900
		50	180	330	625	3000	6000	3400	3900
		60	180	330	625	3000	6000	3600	3900
		70	180	330	625	3000	6000	3800	3900
		80	180	330	625	3000	6000	4000	3900
		90	120	225	500	3000	6000	4200	3900
		100	120	225	500	3000	6000	4300	3900
			% 8	※ 9	※ 10				

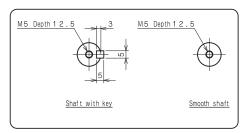
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi 38)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	4300	3900		-	3.3	5.3	13
		4	4300	3900		_	2.0	4.1	12
		5	4300	3900		_	1.6	3.6	11
	Cinala	6	4300	3900	7.8	_	1.3	3.3	11
	Single	7	4300	3900	7.0	_	1.1	3.2	11
		8	4300	3900		_	1.0	3.1	11
		9	4300	3900		_	0.98	3.0	11
		10	4300	3900		_	0.95	3.0	11
		15	4300	3900		0.43	0.86	2.8	ı
		16	4300	3900		0.48	0.92	2.9	_
		20	4300	3900		0.40	0.83	2.8	ı
120B		25	4300	3900		0.38	0.82	2.8	-
		28	4300	3900		0.44	0.88	2.8	ı
		30	4300	3900		0.29	0.74	2.7	-
		35	4300	3900		0.37	0.81	2.7	ı
	Double	40	4300	3900	8.7	0.28	0.73	2.7	-
		45	4300	3900		0.37	0.80	2.7	ı
		50	4300	3900		0.28	0.73	2.7	-
		60	4300	3900		0.28	0.73	2.7	ı
		70	4300	3900		0.28	0.73	2.7	1
		80	4300	3900		0.28	0.73	2.7	ı
		90	4300	3900		0.27	0.73	2.7	ı
		100	4300	3900		0.27	0.73	2.7	ı

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- $\mbox{\%}$ 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- $\ensuremath{\mathbb{X}}$ 4 The maximum average input speed.
- $\ensuremath{\ensuremath{\,\times}}$ 5 The maximum momentary input speed.
- $\mbox{\%}$ 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{X}\ 8$ The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.

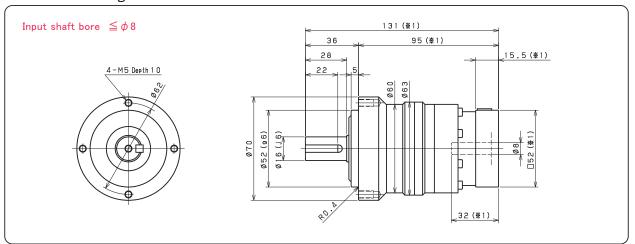

Performance table

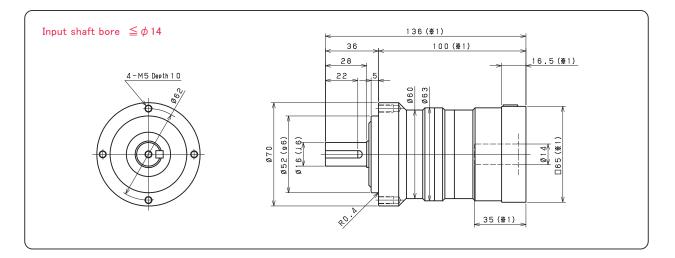

VRL-15	5B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	240	470	1000	2000	4000	3200	2400
		4	240	700	1250	2000	4000	3500	2700
		5	360	700	1250	2000	4000	3800	3000
	Single	6	360	700	1250	2000	4000	4000	3300
	Sirigie	7	360	700	1250	2000	4000	4200	3500
		8	360	700	1250	2000	4000	4400	3700
		9	240	470	1000	2000	4000	4600	3900
		10	240	470	1000	2000	4000	4700	4100
		15	240	470	1000	2000	4000	5400	4900
		16	360	700	1250	2000	4000	5500	5000
		20	360	700	1250	2000	4000	6000	5500
155B		25	360	700	1250	2000	4000	6400	6100
		28	360	700	1250	2000	4000	6700	6400
		30	240	470	1000	2000	4000	6800	6600
		35	360	700	1250	2000	4000	7200	7000
	Double	40	360	700	1250	2000	4000	7500	7500
		45	240	470	1000	2000	4000	7800	7900
		50	360	700	1250	2000	4000	8100	8200
		60	360	700	1250	2000	4000	8600	8200
		70	360	700	1250	2000	4000	9100	8200
		80	360	700	1250	2000	4000	9100	8200
		90	240	470	1000	2000	4000	9100	8200
		100	240	470	1000	2000	4000	9100	8200
			※ 8	※ 9	※ 10				

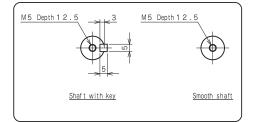

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leqq \phi 28)$	Moment of inertia $(\leqq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$				
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]				
		3	9100	8200		ı	12	20	42				
		4	9100	8200		-	7.5	15	37				
		5	9100	8200		ı	5.8	14	36				
	Single	6	9100	8200	16	-	4.9	13	35				
	Single	7	9100	8200	10	-	4.1	12	34				
		8	9100	8200		ı	3.8	12	34				
		9	9100	8200		-	3.6	11	34				
		10	9100	8200		-	3.5	11	34				
		15	9100	8200		1.3	3.2	11	ļ				
		16	9100	8200		1.5	3.5	11	_				
		20	9100	8200		1.2	3.1	11	ļ				
155B		25	9100	8200		1.1	3.1	11	_				
		28	9100	8200		1.4	3.3	11	ļ				
		30	9100	8200		0.85	2.8	10	_				
		35	9100	8200		1.1	3.1	11	ļ				
	Double	40	9100	8200	18	0.83	2.8	10	_				
		45	9100	8200		1.1	3.0	11	ļ				
		50	9100	8200						0.81	2.8	10	_
		60	9100	8200		0.81	2.8	10	-				
		70	9100	8200		0.80	2.8	10	-				
		80	9100	8200		0.80	2.8	10	_				
		90	9100	8200		0.80	2.8	10	1				
		100	9100	8200		0.80	2.8	10	_				


- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- $\mbox{\%}$ 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- $\ensuremath{\mathbb{X}}$ 4 The maximum average input speed.
- $\ensuremath{\ensuremath{\,\times}}$ 5 The maximum momentary input speed.
- $\mbox{\%}$ 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{X}\ 8$ The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.

VRL-070B 1stage

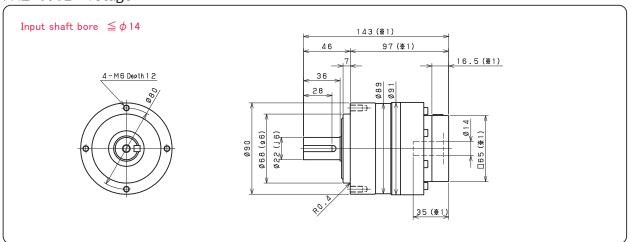


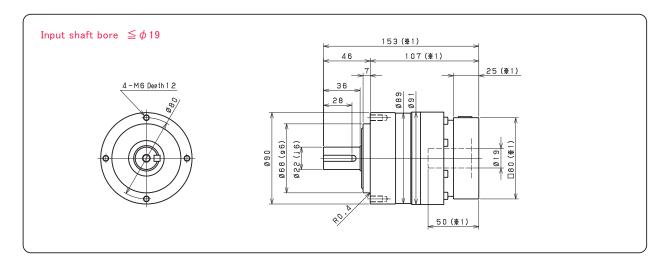

- \divideontimes 1 Length will vary depending on motor.

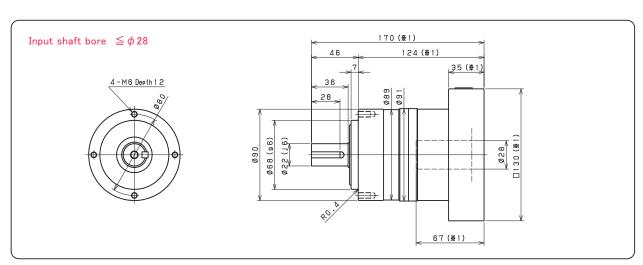

Coaxial shaft **VR** series

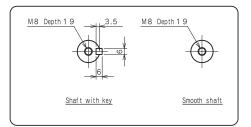
Dimensions

VRL-070B 2stage

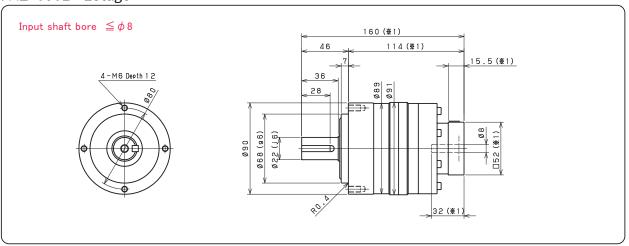


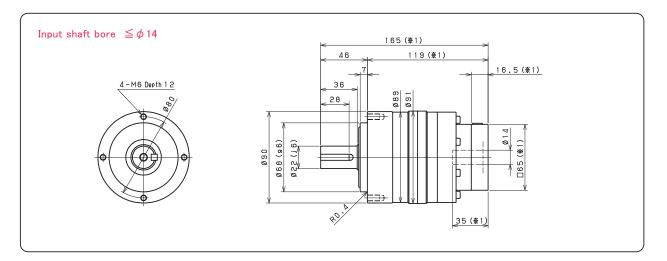

- X 1 Length will vary depending on motor.
- $\mbox{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

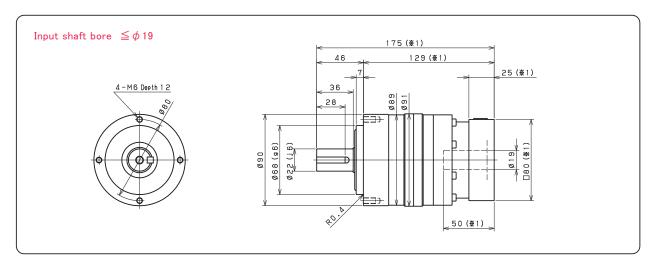

Dimensions

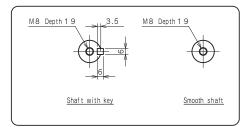


VRL-090B 1stage

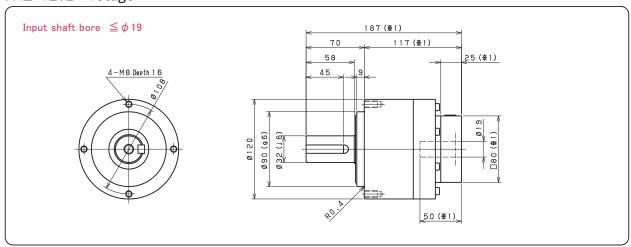


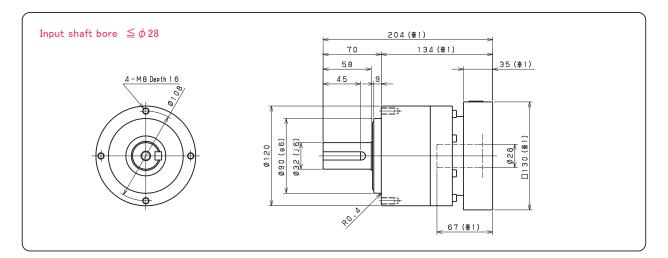


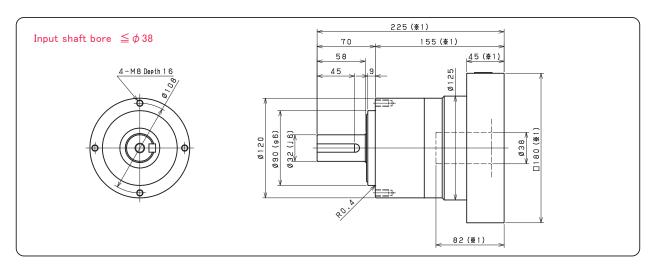


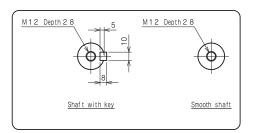

- \divideontimes 1 Length will vary depending on motor.

VRL-090B 2stage

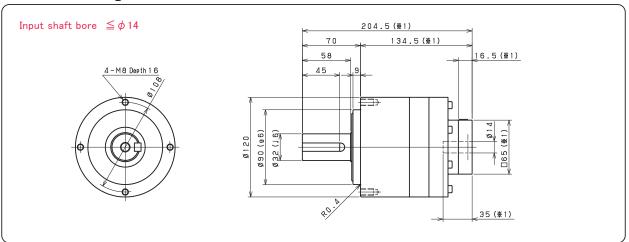


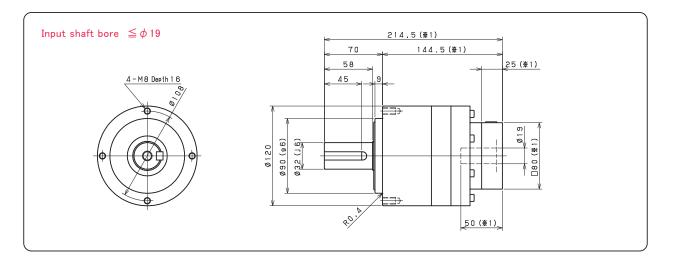

- \divideontimes 1 Length will vary depending on motor.

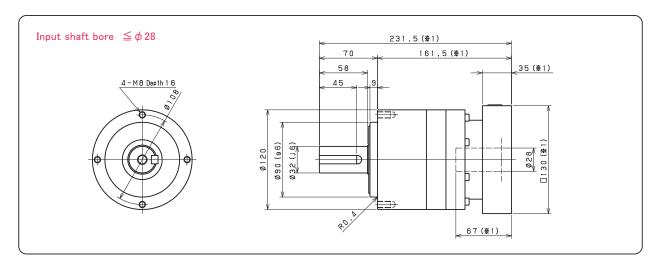

Dimensions

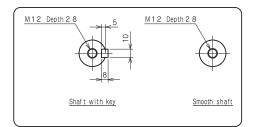


VRL-120B 1stage

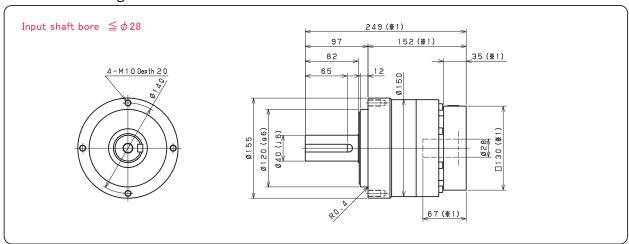


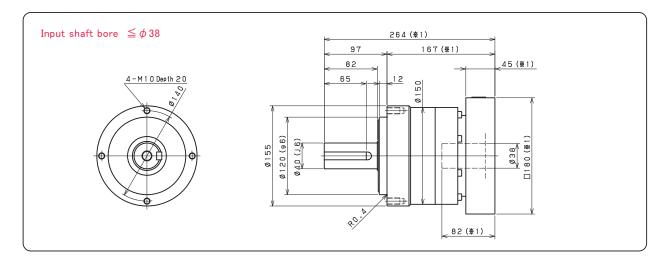


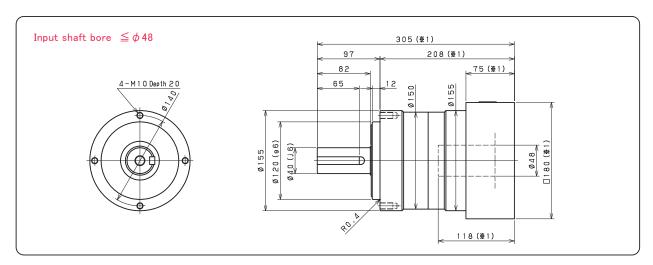


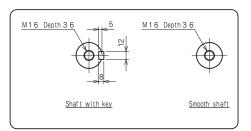

- \divideontimes 1 Length will vary depending on motor.

VRL-120B 2stage

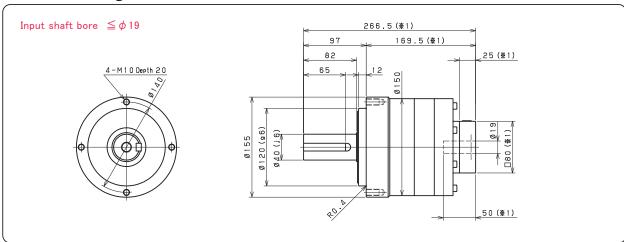


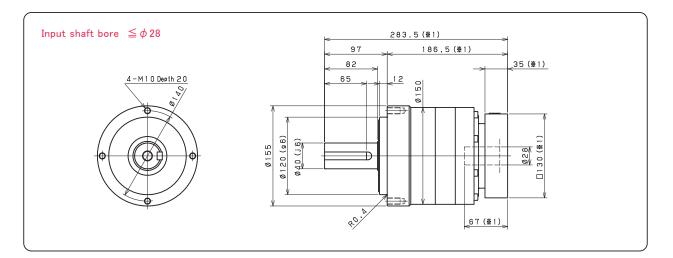

- X 1 Length will vary depending on motor.
- $\ensuremath{\ensuremath{\%}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

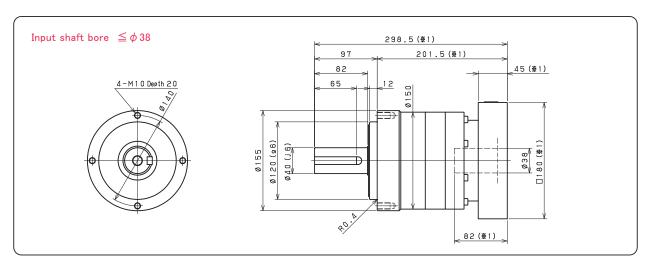

Dimensions

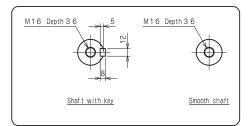


VRL-155B 1stage

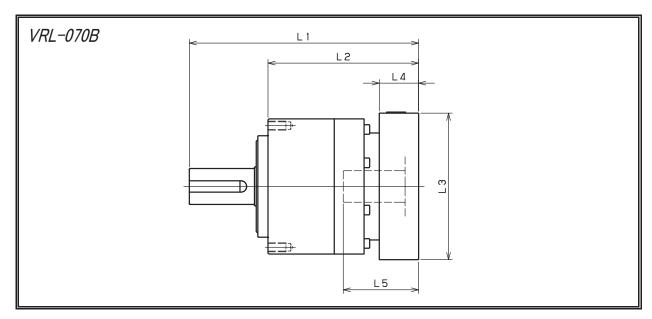




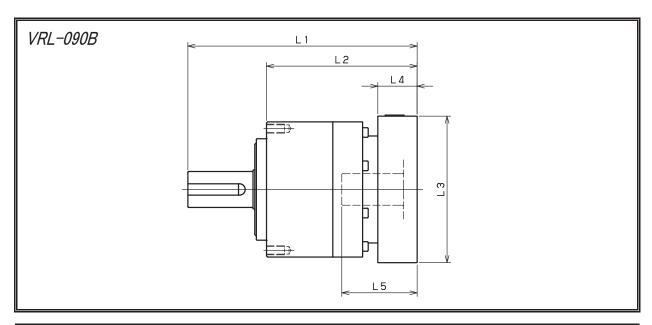



- \divideontimes 1 Length will vary depending on motor.

VRL-155B 2stage

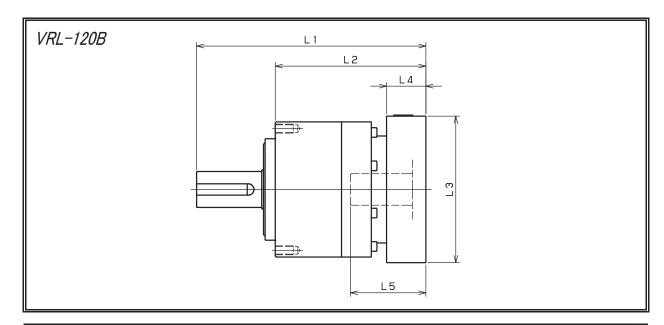


- \divideontimes 1 Length will vary depending on motor.



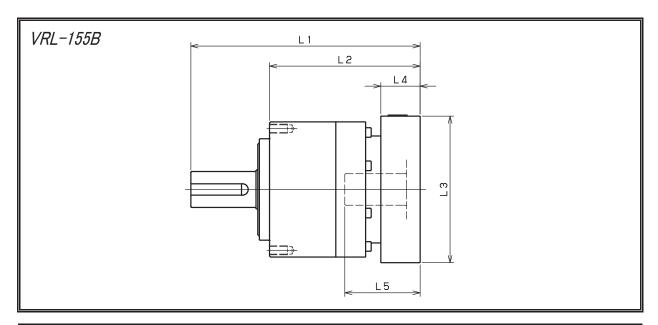
Model number	data A dan tanan da			Single					Double		
woder number	**:Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA·AC·AD·AF·AG	112	76	□52	15.5	32	131	95	□52	15.5	32
VRL-070B-□-□-8**	AB•AE•AH•AJ•AK	117	81	□52	20.5	37	136	100	□52	20.5	37
(,)	BA•BB•BD•BE	112	76	□60	15.5	32	131	95	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF	117	81	□60	20.5	37	136	100	□60	20.5	37
,	CA	117	81	□70	20.5	37	136	100	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	115	79	□65	16.5	35	136	100	□65	16.5	35
	BC•BH	120	84	□65	21.5	40	141	105	□65	21.5	40
	BL	125	89	□65	26.5	45	146	110	□65	26.5	45
	CA	115	79	□70	16.5	35	136	100	□70	16.5	35
VRL-070B-□-□-14**	СВ	120	84	□70	21.5	40	141	105	□70	21.5	40
()	DA·DB·DC·DD·DF·DH	115	79	□80	16.5	35	136	100	□80	16.5	35
$\left[\left(\text{Input shaft bore} \leq \phi 14 \right) \right]$	DE	120	84	□80	21.5	40	141	105	□80	21.5	40
	DG	125	89	□80	26.5	45	146	110	□80	26.5	45
	EA•EB•EC	115	79	□90	16.5	35	136	100	□90	16.5	35
	ED	125	89	□90	26.5	45	146	110	□90	26.5	45
	FA	115	79	□100	16.5	35	136	100	□100	16.5	35
	GA	115	79	□115	16.5	35	136	100	□115	16.5	35
	DA•DB•DC	130	94	□80	25	50					
	DD	140	104	□80	35	60					
	DE	135	99	□80	30	55					
	EA	135	99	□90	30	55					
VDI 070D 🗆 🗆 10494	EB	130	94	□90	25	50					
VRL-070B-□-□-19**	EC	140	104	□90	35	60					
Input shaft bore $\leq \phi$ 19	FA	130	94	□100	25	50					
Impac share bore = \$ 10	FB	140	104	□100	35	60					
	GA•GC	135	99	□115	30	55					
	GB•GD	130	94	□115	25	50					
	HA	130	94	□130	25	50					
	HB	145	109	□130	40	65					
	HC•HD•HE	135	99	□130	30	55					

 $[\]mbox{\ensuremath{\mbox{\%}}}\mbox{\ensuremath{1}}$ Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100


 $[\]ensuremath{\cancel{\times}}\xspace\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code				Single				Double		
Model number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA·AC·AD·AF·AG						160	114	□52	15.5	32
VRL-090B-□-□-8**	AB-AE-AH-AJ-AK						165	119	□52	20.5	37
	BA•BB•BD•BE						160	114	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF						165	119	□60	20.5	37
	CA						165	119	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	143	97	□65	16.5	35	165	119	□65	16.5	35
	BC•BH	148	102	□65	21.5	40	170	124	□65	21.5	40
	BL	153	107	□65	26.5	45	175	129	□65	26.5	45
	CA	143	97	□70	16.5	35	165	119	□70	16.5	35
VRL-090B-□-□-14**	СВ	148	102	□70	21.5	40	170	124	□70	21.5	40
	DA·DB·DC·DD·DF·DH	143	97	□80	16.5	35	165	119	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	148	102	□80	21.5	40	170	124	□80	21.5	40
	DG	153	107	□80	26.5	45	175	129	□80	26.5	45
	EA·EB·EC	143	97	□90	16.5	35	165	119	□90	16.5	35
	ED	153	107	□90	26.5	45	175	129	□90	26.5	45
	FA	143	97	□100	16.5	35	165	119	□100	16.5	35
	GA	143	97	□115	16.5	35	165	119	□115	16.5	35
	DA-DB-DC	153	107	□80	25	50	175	129	□80	25	50
	DD	163	117	□80	35	60	185	139	□80	35	60
	DE	158	112	□80	30	55	180	134	□80	30	55
	EA	158	112	□90	30	55	180	134	□90	30	55
VRL-090B-□-□-19**	EB	153	107	□90	25	50	175	129	□90	25	50
	EC	163	117	□90	35	60	185	139	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	153	107	□100	25	50	175	129	□100	25	50
(",")	FB	163	117	□100	35	60	185	139	□100	35	60
	GA•GC	158	112	□115	30	55	180	134	□115	30	55
	GB•GD	153	107	□115	25	50	175	129	□115	25	50
	HA	153	107	□130	25	50	175	129	□130	25	50
	НВ	168	122	□130	40	65	190	144	□130	40	65
	HC•HD•HE	158	112	□130	30	55	180	134	□130	30	55
	FA•FB•FC	170	124	□100	35	67					
	GA•GB•GC•GD•GE•GF•GG	170	124	□115	35	67					
VRL-090B-□-□-28**	HA•HC•HD	170	124	□130	35	67					
	НВ	180	134	□130	45	77					
Input shaft bore $\leq \phi$ 28	JA•JB•JC	170	124	□150	35	67					
(,)	KA•KB	170	124	□180	35	67					
	LA	170	124	□200	35	67					
	MA	170	124	□220	35	67				_	

[%] 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100 % 2 Bushing will be inserted to adapt to motor shaft.



Model number	**: Adapter code			Single					Double		
Woder Humber	<u> </u>	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	BA·BB·BD·BE·BF·BG·BJ·BK						204.5	134.5	□65	16.5	35
	BC•BH						209.5	139.5	□65	21.5	40
	BL						214.5	144.5	□65	26.5	45
	CA						204.5	134.5	□70	16.5	35
VRL-120B-□-□-14**	CB						209.5	139.5	□70	21.5	40
	DA.DB.DC.DD.DF.DH						204.5	134.5	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE						209.5	139.5	□80	21.5	40
	DG						214.5	144.5	□80	26.5	45
	EA•EB•EC						204.5	134.5	□90	16.5	35
	ED						214.5	144.5	□90	26.5	45
	FA						204.5	134.5	□100	16.5	35
	GA						204.5	134.5	□115	16.5	35
	DA·DB·DC	187	117	□80	25	50	214.5	144.5	□80	25	50
	DD	197	127	□80	35	60	224.5	154.5	□80	35	60
	DE	192	122	□80	30	55	219.5	149.5	□80	30	55
	EA	192	122	□90	30	55	219.5	149.5	□90	30	55
VD 4000 0 0 10 10 1	EB	187	117	□90	25	50	214.5	144.5	□90	25	50
VRL-120B-□-□-19**	EC	197	127	□90	35	60	224.5	154.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	187	117	□100	25	50	214.5	144.5	□100	25	50
Input shart bore \(\psi \)	FB	197	127	□100	35	60	224.5	154.5	□100	35	60
	GA•GC	192	122	□115	30	55	219.5	149.5	□115	30	55
	GB•GD	187	117	□115	25	50	214.5	144.5	□115	25	50
	HA	187	117	□130	25	50	214.5	144.5	□130	25	50
	НВ	202	132	□130	40	65	229.5	159.5	□130	40	65
	HC•HD•HE	192	122	□130	30	55	219.5	149.5	□130	30	55
	FA•FB•FC	204	134	□100	35	67	231.5	161.5	□100	35	67
	GA-GB-GC-GD-GE-GF-GG	204	134	□115	35	67	231.5	161.5	□115	35	67
VDI 100D D D 00	HA•HC•HD	204	134	□130	35	67	231.5	161.5	□130	35	67
VRL-120B-□-□-28**	НВ	214	144	□130	45	77	241.5	171.5	□130	45	77
Input shaft bore $\leq \phi$ 28	JA•JB•JC	204	134	□150	35	67	231.5	161.5	□150	35	67
Imput shart bore = \$\psi_20\$	KA•KB	204	134	□180	35	67	231.5	161.5	□180	35	67
	LA	204	134	□200	35	67	231.5	161.5	□200	35	67
	MA	204	134	□220	35	67	231.5	161.5	□220	35	67
	HA	225	155	□130	45	82					
	НВ	220	150	□130	40	77					
VDI 100D 🖂 🖂 60::	JA	225	155	□150	45	82					
VRL-120B-□-□-38**	KA•KB•KC	225	155	□180	45	82					
Input shaft bore $\leq \phi$ 38	LA	225	155	□200	45	82					
Imput shart bore \(\text{\text{\$\pi}}\) 38	LB	235	165	□200	55	92					
	MA•MB	225	155	□220	45	82					
	NA	225	155	□250	45	82					

 $[\]mbox{\ensuremath{\%}}\mbox{ 1 Single reduction}: 1/3 \mbox{\ensuremath{\sim}}\mbox{ 1/10, Double reduction}: 1/15 \mbox{\ensuremath{\sim}}\mbox{ 1/100}$

 $[\]ensuremath{\ensuremath{\%}}\xspace$ 2 Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single					Double		
Woder Humber	Adapter Code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	DA·DB·DC						266.5	169.5	□80	25	50
	DD						276.5	179.5	□80	35	60
	DE						271.5	174.5	□80	30	55
	EA						271.5	174.5	□90	30	55
VD. 4550 0 0 40	EB						266.5	169.5	□90	25	50
VRL-155B-□-□-19**	EC						276.5	179.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA						266.5	169.5		25	50
[[","",",","]	FB						276.5	179.5	□100	35	60
	GA-GC						271.5	174.5		30	55
	GB•GD						266.5	169.5	□115	25	50
	HA						266.5	169.5	□130	25	50
	НВ						281.5	184.5	□130	40	65
	HC·HD·HE						271.5	174.5	□130	30	55
	FA•FB•FC	249	152	□100	35	67	283.5	186.5	□100	35	67
	GA·GB·GC·GD·GE·GF·GG	249	152	□115	35	67	283.5	186.5	□115	35	67
VDI 1550 🗆 🗆 20state	HA•HC•HD	249	152	□130	35	67	283.5	186.5	□130	35	67
VRL-155B-□-□-28**	НВ	259	162	□130	45	77	293.5	196.5	□130	45	77
Input shaft bore $\leq \phi$ 28	JA•JB•JC	249	152	□150	35	67	283.5	186.5	□150	35	67
	KA•KB	249	152	□180	35	67	283.5	186.5	□180	35	67
	LA	249	152	□200	35	67	283.5	186.5	□200	35	67
	MA	249	152	□220	35	67	283.5	186.5	□220	35	67
	HA	264	167	□130	45	82	298.5	201.5	□130	45	82
	HB	259	162	□130	40	77	293.5	196.5	□130	40	77
VDI 1550 🗆 🗆 2011	JA	264	167	□150	45	82	298.5	201.5	□150	45	82
VRL-155B-□-□-38**	KA•KB•KC	264	167	□180	45	82	298.5	201.5	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	264	167	□200	45	82	298.5	201.5	□200	45	82
[Input offaire poro = \$ so	LB	274	177	□200	55	92	308.5	211.5	□200	55	92
	MA·MB	264	167	□220	45	82	298.5	201.5	□220	45	82
	NA	264	167	□250	45	82	298.5	201.5	□250	45	82
	KB•KC	285	188	□180	55	98					
	KA	305	208	□180	75	118					
VRL-155B-□-□-48**	LA	285	188	□200	55	98					
	MA	285	188	□220	55	98					
Input shaft bore $\leq \phi$ 48	MB	305	208	□220	75	118					
	NA	305	208	□250	75	118					
	PA	305	208	□280	75	118					

 $[\]ensuremath{\,\dot{\times}\,} 1$ Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

 $[\]ensuremath{\ensuremath{\mathbb{X}}}$ 2 Bushing will be inserted to adapt to motor shaft.